Key Dependent Message Security and Receiver Selective Opening Security for Identity-Based Encryption

نویسندگان

  • Fuyuki Kitagawa
  • Keisuke Tanaka
چکیده

We construct two identity-based encryption (IBE) schemes. The first one is IBE satisfying key dependent message (KDM) security for user secret keys. The second one is IBE satisfying simulation-based receiver selective opening (RSO) security. Both schemes are secure against adaptive-ID attacks and do not have any a-priori bound on the number of challenge identities queried by adversaries in the security games. They are the first constructions of IBE satisfying such levels of security. Our constructions of IBE are very simple. We construct KDM secure IBE by transforming KDM secure secret-key encryption using IBE satisfying only ordinary indistinguishability against adaptive-ID attacks (IND-ID-CPA security). Our simulation-based RSO secure IBE is based only on IND-ID-CPA secure IBE. We also demonstrate that our construction technique for KDM secure IBE is used to construct KDM secure public-key encryption. More precisely, we show how to construct KDM secure public-key encryption from KDM secure secret-key encryption and public-key encryption satisfying only ordinary indistinguishability against chosen plaintext attacks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

QTRU: quaternionic version of the NTRU public-key cryptosystems

In this paper we will construct a lattice-based public-key cryptosystem using non-commutative quaternion algebra, and since its lattice does not fully fit within Circular and Convolutional Modular Lattice (CCML), we prove it is arguably more secure than the existing lattice-based cryptosystems such as NTRU. As in NTRU, the proposed public-key cryptosystem relies for its inherent securi...

متن کامل

Efficient Multi-receiver Identity-Based Encryption and Its Application to Broadcast Encryption

In this paper, we construct an efficient “multi-receiver identity-based encryption scheme”. Our scheme only needs one (or none if precomputed and provided as a public parameter) pairing computation to encrypt a single message for n receivers, in contrast to the simple construction that re-encrypts a message n times using Boneh and Franklin’s identity-based encryption scheme, considered previous...

متن کامل

An Effective Model for Signcryption using Attribute based Encryption

Secret and secure delivery of message is most important issue in field of security hence signcryption were used. The term signcryption is referred as a technique of encrypting the data with the use of signatures in area of public key cryptography. A signcryption technique is a combination of digital signature which is used for authentication and public key cryptography which is used for securin...

متن کامل

Provably CCA-Secure Anonymous Multi-Receiver Certificateless Authenticated Encryption

Multi-receiver encryption allows a sender to choose a set of authorized receivers and send them a message securely and efficiently. Only one ciphertext corresponding to the message is generated regardless of the number of receivers. Thus it is practical and useful for video conferencing systems, pay-per-view channels, distance education, and so forth. In 2010, for further protecting receivers’ ...

متن کامل

KDM Security for Identity-Based Encryption: Constructions and Separations

For encryption schemes, key dependent message (KDM) security requires that ciphertexts preserve secrecy even when the encrypt messages may depend on the secret keys. While KDM security has been extensively studied for public-key encryption (PKE), it receives much less attention in the setting of identity-based encryption (IBE). In this work, we focus on the KDM security for IBE. Our results are...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2017  شماره 

صفحات  -

تاریخ انتشار 2017